Anthony J. Clemens

Highly-motivated chemical engineer, adept in data science, Python programming, machine learning and statistics.

EDUCATION	University of California, Santa Derbara
9/2016 – 6/2020	University of California, Santa Barbara Bachelor of Science, Chemical Engineering Cumulative GPA: 3.55 ; Upper-division major GPA: 3.65
9/2020 - 12/2020	General Assembly Data Science Immersive 12-week comprehensive data science boot camp. Over 480 hours of instruction in Python. Data visualization, classical statistical models, machine learning, neural networks, cloud computing.
RESEARCH EXPERIENCI	Ε
6/2019 – 9/2019	 Undergraduate Research, Segalman and Chabinyc Group, Chemical Engineering and Materials Research, The University of California, Santa Barbara Project: Design, build, and calibrate a doping chamber to dope thin film polymers via the vapor phase, integrate a quartz crystal microbalance, and accurately quantify the mass transfer Used UV-Vis spectroscopy, X-ray Photoelectron Spectroscopy and stylus profilometry Final report of this project can be viewed at this link: <u>https://tinyurl.com/y3q8zgib</u>
ENGINEERING PROJEC	Γ
1/2020 – 6/2020	 UCSB Chemical Engineering Senior Design Project, Production of Ethyl Acetate Solvent via Green Technology Conceptual design of chemical plant. Included modeling reacting flows within a plug flow reactor using chemical kinetics in order to optimize reactor conditions, designing multicomponent distillation columns, building plant in Aspen HYSYS, and techno-economic assessment Final report of this project can be viewed at this link: https://tinyurl.com/yym3kg5y
1/2020 – 3/2020	 Advanced Process Control Final Project Setup Model Predictive Control (MPC) and paired PID control on real multiple input and multiple output (MIMO) system
1/2020 – 3/2020	 Ran transfer function identification test on Arduino to estimate transfer functions of a real system Mechatronics Projects Constructed a music spectrum analyzer that displayed the frequency and amplitude of an audio signal on an LED board in real time Built amplified thermocouple digital measurement system using an Arduino microcontroller
2/2018 – 3/2018	 Thermodynamics Design Project Developed and coded an algorithm in MATLAB to run millions of efficiency calculations of a mobile steam power generator in order to determine the maximum efficiency Used X Steam to integrate steam-table data into MATLAB
DATA SCIENCE PROJEC	TS
9/2020 – 12/2020	 Reinforcement Learning (Capstone Project) - <u>https://github.com/ajclemens/reinforcement_learning</u> Used openAl gym to train neural networks to solve the cartpole control problem in simulation Implemented two solutions: A Deep Q-Network (DQN) algorithm using keras, and a Neuroevolution of Augmenting Topologies (NEAT) genetic algorithm using neat-python
9/2020 – 12/2020	 Self-Driving Car AI - <u>https://github.com/ajclemens/self_driving_car_ai</u> Used Udacity's driving simulator to train a deep neural network (convolutional neural network) to map car camera views to steering angles Implemented a custom loss function to tune the AI's driving behavior to be more human-like Trained models in the cloud using Google's cloud compute engine
TECHNICAL SKILLS	Python (Pandas, Numpy, Scikit-Learn, Matplotlib, Seaborn, TensorFlow, Keras), SQL, MATLAB, Cloud Computing (AWS, Google Cloud), Data Visualization, Machine Learning, Deep Learning, Reinforcement Learning, Deep Neural Networks, Git, Mathematica, C++, Java, Solidworks, Aspen HYSYS, Arduino prototyping (circuits/computer interfacing)